

GCE

Mathematics (MEI)

Advanced Subsidiary GCE 4755

Further Concepts for Advanced Mathematics (FP1)

Mark Scheme for June 2010

PMT

4755 Mark Scheme June 2010

Qu	Answer	Mark	Comment
Sectio	n A		
1	$4x^{2} - 16x + C \equiv A(x^{2} + 2Bx + B^{2}) + 2$	B1	A = 4
	$\Leftrightarrow 4x^2 - 16x + C \equiv Ax^2 + 2ABx + AB^2 + 2$	M1	Attempt to expand RHS or other valid method (may be implied)
	$\Leftrightarrow A = 4, B = -2, C = 18$	A2, 1 [4]	1 mark each for B and C, c.a.o.
2(i)	2x - 5y = 9	B1	
2(1)	3x + 7y = -1	B1 [2]	
2(ii)	$\mathbf{M}^{-1} = \frac{1}{29} \begin{pmatrix} 7 & 5 \\ -3 & 2 \end{pmatrix}$	M1 A1 [2]	Divide by determinant c.a.o.
	$\frac{1}{29} \begin{pmatrix} 7 & 5 \\ -3 & 2 \end{pmatrix} \begin{pmatrix} 9 \\ -1 \end{pmatrix} = \frac{1}{29} \begin{pmatrix} 58 \\ -29 \end{pmatrix}$ $\Rightarrow x = 2, \ y = -1$	M1 A1(ft) [2]	Pre-multiply by their inverse For both
3	z=1-2j	B1	
	$1 + 2j + 1 - 2j + \alpha = \frac{1}{2}$	M1	Valid attempt to use sum of roots, or other valid method
	$\Rightarrow \alpha = -\frac{3}{2}$	A1	c.a.o.
	$\frac{-k}{2} = -\frac{3}{2} (1 - 2j) (1 + 2j) = -\frac{15}{2}$	M1	Valid attempt to use product of roots, or other valid method
		A1(ft)	Correct equation – can be implied
	<i>k</i> =15	A1 [6]	c.a.o.
	OR		
	$(z-(1+2j))(z-(1-2j))=z^2-2z+5$	M1 A1	Multiplying correct factors Correct quadratic, c.a.o.
	$2z^3 - z^2 + 4z + k = (z^2 - 2z + 5)(2z + 3)$	M1	Attempt to find linear factor
	$\alpha = \frac{-3}{2}$	A1(ft)	
	<i>k</i> = 15	A1 [6]	c.a.o.

4755 Mark Scheme June 2010

			T
4	$w = x + 1 \Rightarrow x = w - 1$	B1	Substitution. For $x = w+1$ give B0 but then follow for a maximum of 3 marks
	$x^3 - 2x^2 - 8x + 11 = 0, \ w = x - 1$		marks
	$\Rightarrow (w-1)^3 - 2(w-1)^2 - 8(w-1) + 11 = 0$	M1	Attempt to substitute into cubic
	$\Rightarrow w^3 - 5w^2 - w + 16 = 0$	M1	Attempt to expand
		A3	-1 for each error
		[6]	(including omission of $= 0$)
	OR		
	$\alpha + \beta + \gamma = 2$	B1	All 3 correct
	$\alpha\beta + \alpha\gamma + \beta\gamma = -8$	Di	All 5 concet
	$\alpha\beta\gamma = -11$		
	Let the new roots be k , l and m then		
	$k+l+m = \alpha + \beta + \gamma + 3 = 2+3=5$	M1	Valid attempt to use their sum of
	$kl + km + lm = (\alpha\beta + \alpha\gamma + \beta\gamma) + 2(\alpha + \beta + \gamma) + 3$		roots in original equation to find sum
	= -8 + 4 + 3 = -1	M1	of roots in new equation Valid attempt to use their product of
		1411	roots in original equation to find one
	$klm = \alpha\beta\gamma + (\alpha\beta + \alpha\gamma + \beta\gamma) + (\alpha + \beta + \gamma) + 1$		of $\sum \alpha \beta$ or $\alpha \beta \gamma$
	=-11-8+2+1=-16		_
	$\Rightarrow w^3 - 5w^2 - w + 16 = 0$	A3	-1 each error (including omission of = 0)
		[6]	(including offission of = 0)
5	$\frac{n}{n}$ 1 1 $\frac{1}{n}$ 1 1	[6]	
	$\sum_{r=1}^{n} \frac{1}{(5r-1)(5r+4)} = \frac{1}{5} \sum_{r=1}^{n} \left(\frac{1}{5r-1} - \frac{1}{5r+4} \right)$	M1	Attempt to use identity – may be
			implied
	$ = \frac{1}{5} \left(\left(\frac{1}{4} - \frac{1}{9} \right) + \left(\frac{1}{9} - \frac{1}{14} \right) + \dots + \left(\frac{1}{5n-1} - \frac{1}{5n+4} \right) \right) $	A1	Terms in full (at least first and last)
	5(4 9) (9 14) (5n-1 5n+4)	711	Terms in run (at least inst and last)
	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 5n+4-4 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} n \\ 1 & 1 \end{bmatrix}$	M1	Attempt at annualling
	$= \frac{1}{5} \left(\frac{1}{4} - \frac{1}{5n+4} \right) = \frac{1}{5} \left(\frac{5n+4-4}{4(5n+4)} \right) = \frac{n}{4(5n+4)}$	M1	Attempt at cancelling
		A1	(1 1)
		111	$\left(\frac{1}{4} - \frac{1}{5n+4}\right)$
		A1	factor of $\frac{1}{5}$
		A 1	Correct answer as a single algebraic
		F 67	fraction
		[6]	

6(i)	$u_2 = \frac{2}{1+2} = \frac{2}{3}, u_3 = \frac{\frac{2}{3}}{1+\frac{2}{3}} = \frac{2}{5}$	M1 A1 [2]	Use of inductive definition c.a.o.
6(ii)	When $n = 1$, $\frac{2}{2 \times 1 - 1} = 2$, so true for $n = 1$	В1	Showing use of $u_n = \frac{2}{2n-1}$
	Assume $u_k = \frac{2}{2k-1}$	E1	Assuming true for <i>k</i>
	$\Rightarrow u_{k+1} = \frac{\frac{2}{2k-1}}{1+\frac{2}{2k-1}}$	M1	u_{k+1}
	$= \frac{\frac{2}{2k-1}}{\frac{2k-1+2}{2k-1}} = \frac{2}{2k+1}$	A1	Correct simplification
	$=\frac{2}{2(k+1)-1}$		
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is also true for $k + 1$. Since it is true for $k = 1$, it is true for all positive	E1	Dependent on A1 and previous E1
	integers.	E1 [6]	Dependent on B1 and previous E1
			Section A Total: 36

|--|

4755

$$\left(0, -\frac{1}{2}\right)$$

$$(-3, 0), \left(\frac{1}{2}, 0\right)$$

$$(-3,0), \left(\frac{1}{2},0\right)$$

7(ii)

$$x = 3$$
, $x = 2$ and $y = 2$

7(iii)

Large positive x, $y \rightarrow 2^+$ (e.g. substitute x = 100 to give 2.15..., or convincing algebraic argument)

7(iv)

 $\Rightarrow (2x-1)(x+3) = 2(x-3)(x-2)$ $\Rightarrow x = 1$

From graph x < 1 or 2 < x < 3

B1

B1 [2] For both

В1 B1

B1 [3]

M1Must show evidence of method

A1 A0 if no valid method

B1 Correct RH branch

[3]

Or other valid method to find intersection with horizontal asymptote

A1

M1

B1 For x < 1For 2 < x < 3**B**1 [4]

4755 Mark Scheme

8(i)	$\arg \alpha = \frac{\pi}{6}, \ \alpha = 2$
	π

$$\arg \beta = \frac{\pi}{2}, \ |\beta| = 3$$

8(ii)
$$\alpha\beta = (\sqrt{3} + j)3j = -3 + 3\sqrt{3}j$$

$$\frac{\beta}{\alpha} = \frac{3j}{\sqrt{3} + j} = \frac{3j(\sqrt{3} - j)}{(\sqrt{3} + j)(\sqrt{3} - j)}$$
$$= \frac{3 + 3\sqrt{3}j}{4} = \frac{3}{4} + \frac{3\sqrt{3}j}{4}$$

8(iii)

B1 Modulus of α

B1 Argument of α (allow 30°)

B1 Both modulus and argument of β (allow 90°)

June 2010

M1 Use of $j^2 = -1$ A1 Correct

M1 Correct use of conjugate of denominator

A1 Denominator = 4 A1 All correct

M1 Argand diagram with at least one correct point

A 1(ft) Correct relative positions with

A1(ft) Correct relative positions with appropriate labelling

PMT

4755 Mark Scheme June 2010

Qu	Answer	Mark	Comment	
Section B (continued)				
9(i)	P is a rotation through 90 degrees about the	B1	Rotation about origin	
	origin in a clockwise direction.	B1	90 degrees clockwise, or equivalent	
9(ii)	Q is a stretch factor 2 parallel to the x-axis	B1 B1 [4]	Stretch factor 2 Parallel to the <i>x</i> -axis	
0(***)	$\mathbf{QP} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix}$	M1 A1 [2]	Correct order c.a.o.	
9(iii)	$ \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 & 3 \\ 0 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 2 \\ -2 & -1 & -3 \end{pmatrix} $	M1	Pre-multiply by their QP - may be implied	
	A' = (0, -2), B' = (4, -1), C' = (2, -3)	A1(ft) [2]	For all three points	
9(iv)	$\mathbf{R} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	B1 B1 [2]	One for each correct column	
9(v)	$\mathbf{RQP} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$	M1 A1(ft)	Multiplication of their matrices in correct order	
	$\left(\mathbf{RQP}\right)^{-1} = \frac{-1}{2} \begin{pmatrix} -2 & 0\\ 0 & 1 \end{pmatrix}$	M1	Attempt to calculate inverse of their RQP c.a.o.	
		[4]		
Section B Total: 36				
Total: 72				